Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 11(11): 778-82, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19745747

RESUMO

PURPOSE: Microarray technology has revolutionized the field of clinical genetics with the ability to detect very small copy number changes. However, challenges remain in linking genotype with phenotype. Our goal is to enable a clinical geneticist to align the molecular karyotype information from an individual patient with the annotated genomic content, so as to provide a clinical prognosis. METHODS: We have combined data regarding copy number variations, microdeletion syndromes, and classical chromosome abnormalities, with the sparse but growing knowledge about the biological role of specific genes to create a genomic map of Chromosome 18 with clinical utility. RESULTS: We have created a draft model of such a map, drawing from our long-standing interest in and data regarding the abnormalities of Chromosome 18. CONCLUSION: We have taken the first step toward creating a genomic map that can be used by the clinician in counseling and directing preventive or symptomatic care of individuals with Chromosome 18 abnormalities.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 18/genética , Deleção de Genes , Dosagem de Genes , Mapeamento Cromossômico , Humanos , Síndrome
2.
Am J Med Genet A ; 149A(7): 1421-30, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19533771

RESUMO

One of our primary goals is to help families who have a child with an 18q deletion anticipate medical issues in order to optimize their child's medical care. To this end we have narrowed the critical regions for four phenotypic features and determined the penetrance for each of those phenotypes when the critical region for that feature is hemizygous. We completed molecular analysis using oligo-array CGH and clinical assessments on 151 individuals with deletions of 18q and made genotype-phenotype correlations defining or narrowing critical regions. These nested regions, all within 18q22.3 to q23, were for kidney malformations, dysmyelination of the brain, growth hormone stimulation response failure, and aural atresia. The region for dysmyelination and growth hormone stimulation response failure were identical and was narrowed to 1.62 Mb, a region containing five known genes. The region for aural atresia was 2.3 Mb and includes an additional three genes. The region for kidney malformations was 3.21 Mb and includes an additional four genes. Penetrance rates were calculated by comparing the number of individuals hemizygous for a critical region with the phenotype to those without the phenotype. The kidney malformations region was 25% penetrant, the dysmyelination region was 100% penetrant, the growth hormone stimulant response failure region was 90% penetrant with variable expressivity, and the aural atresia region was 78% penetrant. Identification of these critical regions suggest possible candidate genes, while penetrance calculations begin to create a predictive phenotypic description based on genotype.


Assuntos
Aberrações Cromossômicas , Mapeamento Cromossômico , Cromossomos Humanos Par 18 , Penetrância , Otopatias/congênito , Otopatias/epidemiologia , Otopatias/genética , Orelha Média/anormalidades , Ligação Genética , Genótipo , Transtornos do Crescimento/congênito , Transtornos do Crescimento/epidemiologia , Transtornos do Crescimento/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/epidemiologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Rim/anormalidades , Nefropatias/congênito , Nefropatias/epidemiologia , Nefropatias/genética , Fenótipo
3.
Am J Med Genet A ; 149A(7): 1431-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19533772

RESUMO

The advent of oligonucleotide array comparative genomic hybridization (aCGH) has revolutionized diagnosis of chromosome abnormalities in the genetics clinic. This new technology also has valuable potential as a research tool to investigate larger genomic rearrangements that are typically diagnosed via routine karyotype. aCGH was used as a tool for the high-resolution analysis of chromosome content in individuals with known deletions of chromosome 18. The aim of this study was to clarify the precise location of the breakpoints as well as to determine the presence of occult translocations creating additional deletions and duplications. One hundred eighty-nine DNA samples from individuals with 18q deletions were analyzed. No breakpoint clusters were identified, as no more than two individuals had breakpoints within 2 kb of each other. Only two regions of 18q were never found to be haploid, suggesting the existence of haplolethal genes in those regions. Of the individuals with only a chromosome 18 abnormality, 17% (n = 29) had interstitial deletions. Six percent (n = 11) had a region of duplication immediately proximal to the deletion. Eight percent (n = 15) had more complex rearrangements with captured (non-18q) telomeres thus creating a trisomic region. The 15 captured telomeres originated from a limited number of other telomeres (4q, 10q, 17p, 18p, 20q, and Xq). These data were converted into a format for ease of viewing and analysis by creating custom tracks for the UCSC Genome Browser. Taken together, these findings confirm a higher level of variability and genomic complexity surrounding deletions of 18q than has previously been appreciated.


Assuntos
Cromossomos Humanos Par 18 , Hibridização Genômica Comparativa/métodos , Análise em Microsséries/métodos , Deleção Cromossômica , Mapeamento Cromossômico , Genótipo , Homozigoto , Humanos , Cariotipagem/métodos , Ploidias , Software
4.
Am J Med Genet A ; 146A(22): 2898-904, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18932219

RESUMO

Recurrent constitutional non-Robertsonian translocations are very rare. We present the third instance of cryptic, unbalanced translocation between 4q and 18q. This individual had an apparently normal karyotype; however, after subtelomere fluorescence in situ hybridization (FISH), he was found to have a cryptic unbalanced translocation between 4q and 18q [ish der(18)t(4;18)(q35;q23)(4qtel+,18qtel-)]. Oligonucleotide array comparative genomic hybridization (aCGH) refined the breakpoints in this child and in the previously reported child and indicated that the breakpoints were within 20 kb of each other, suggesting that this translocation is, indeed, recurrent. A comparison of the clinical presentation of these individuals identified features that are characteristic of both 18q- and 4q+ as well as features that are not associated with either condition, such as a prominent metopic ridge, bitemporal narrowing, prominent, and thick eyebrows. Individuals with features suggestive of this 4q;18q translocation but a normal karyotype warrant aCGH or subtelomere studies.


Assuntos
Anormalidades Múltiplas/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 4/genética , Translocação Genética , Aneuploidia , Pré-Escolar , Deleção Cromossômica , Hibridização Genômica Comparativa , Humanos , Hibridização in Situ Fluorescente , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...